ARTEMIS observations of lunar dayside plasma in the terrestrial magnetotail lobe
نویسندگان
چکیده
[1] We report observations by the dual-probe Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS) mission of Moon-related electron and ion signatures obtained above the dayside lunar surface in the terrestrial magnetotail lobes. While the Moon is often thought of as a passive absorber, recent observations from Kaguya, Chandrayaan, Chang’E, and ARTEMIS indicate that plasma of lunar origin can have significant effects on the near-lunar environment. We now present new observations from ARTEMIS showing that lunar plasma can play a dominant role in the low-density environment of the terrestrial magnetotail. Two-point observations reveal that the density of plasma of lunar origin is higher than that of the ambient lobe plasma even several hundreds of kilometers above the Moon’s dayside. Meanwhile, the distributions of incoming electrons exhibit modifications correlated with Moon-related populations, suggesting direct or indirect interactions of the lobe electrons with plasma of lunar origin. We also observe high-energy photoelectron emission from the dayside lunar surface, supporting the existence of large positive potentials on the lunar surface. Pickup ions with nonzero parallel-velocity components provide further evidence for positive surface potentials of tens of volts or more. ARTEMIS data reveal not only the existence of the positive surface potentials much larger than those predicted from a current-balance model based on Maxwellian plasmas but also their significant implications for the dynamics of both the dominant Moon-originating ions and the tenuous ambient plasma populations in the tail lobe.
منابع مشابه
Lunar dayside current in the terrestrial lobe: ARTEMIS observations
We report Acceleration, Reconnection, Turbulence and Electrodynamics of Moon’s Interaction with the Sun (ARTEMIS) dual-probe observations of two events in the terrestrial magnetotail lobe, both characterized by upward moving heavy ions of lunar origin at one of the probes that is magnetically connected with the dayside lunar surface. By treating magnetic measurements at the other probe as the u...
متن کاملFirst remote measurements of lunar surface charging from ARTEMIS: Evidence for nonmonotonic sheath potentials above the dayside surface
[1] During an early lunar encounter, ARTEMIS‐P2 passed earthward from the Moon in the terrestrial magnetotail. Fortuitously, though more than 8000 km away, magnetic field lines connected the spacecraft to the dayside lunar surface during several time periods in both the lobe and plasma sheet. During these intervals, ARTEMIS made the first accurate and quantitative remote measurements of lunar s...
متن کاملModel-based constraints on the lunar exosphere derived from ARTEMIS pickup ion observations in the terrestrial magnetotail
[1] We use Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS) measurements of lunar exospheric pickup ions in the terrestrial magnetotail lobes combined with a particle-tracing model to constrain the source species and distributions of the lunar neutral exosphere. These pickup ions, generated by photoionization of neutral species while th...
متن کاملARTEMIS observations of lunar pickup ions: Mass constraints on ion species
[1] Observations of heavy ions of lunar origin give important information regarding lunar exospheric processes, especially with respect to exospheric particle abundance and composition. Electrostatic analyzers without a time-of-flight section provide highly sensitive, absolute density detection but without mass discrimination. Here we place constraints on lunar ion species through inference of ...
متن کاملUsing ARTEMIS pickup ion observations to place constraints on the lunar atmosphere
[1] We present a method for deriving constraints on the structure and composition of the lunar atmosphere by using pickup ion measurements from ARTEMIS, mapping observed fluxes from the spacecraft location to derive production rates at the source region, and fitting to a parameterized neutral atmosphere model. We apply this technique to ~12min of high-resolution burst data collected by ARTEMIS ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013